Low-rank Representation for Enhanced Deep Neural Network Acoustic Models

نویسندگان

  • Gil Luyet
  • Marcus Liwicki
چکیده

Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DNN) to estimate class-conditional posterior probabilities. The posterior probabilities are used for acoustic modeling in hidden Markov models (HMM), and form a hybrid DNN-HMM which is now the leading edge approach to solve ASR problems. The present work builds upon the hypothesis that the optimal acoustic models are sparse and lie on multiple low-rank probability subspaces. Hence, the main goal of this Master project aimed at investigating different ways to restructure the DNN outputs using low-rank representation. Exploiting a large number of training posterior vectors, the underlying low-dimensional subspace can be identified, and low-rank decomposition enables separation of the “optimal” posteriors from the spurious (unstructured) uncertainties at the DNN output. Experiments demonstrate that low-rank representation can enhance posterior probability estimation, and lead to higher ASR accuracy. The posteriors are grouped according to their subspace similarities, and structured through low-rank decomposition. Furthermore, a novel hashing technique is proposed exploiting the low-rank property of posterior subspaces that enables fast search in the space of posterior exemplars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Low-rank Representation of Nearest Neighbor Phone Posterior Probabilities to Enhance Dnn Acoustic Modeling

We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of lowdimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstructured sparse noise over the optimal posteriors. We aim to investigate different ways to structure the DNN outputs by exploiting low-rank repres...

متن کامل

Improved Automatic Speech Recognition Using Subband Temporal Envelope Features and Time-Delay Neural Network Denoising Autoencoder

This paper investigates the use of perceptually-motivated subband temporal envelope (STE) features and time-delay neural network (TDNN) denoising autoencoder (DAE) to improve deep neural network (DNN)-based automatic speech recognition (ASR). STEs are estimated by full-wave rectification and low-pass filtering of band-passed speech using a Gammatone filter-bank. TDNNs are used either as DAE or ...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016